Nutrition Transition and Agricultural Transformation: A Preston Curve Approach

Will Masters
Friedman School of Nutrition Science & Policy, Tufts University
www.nutrition.tufts.edu | http://sites.tufts.edu/willmasters

New Jersey Institute for Food, Nutrition and Health
Rutgers University, 28 October 2015
Acknowledgements

Anaya Hall, Elena Martinez, Peilin Shi, Gitanjali Singh, Patrick Webb and Dariush Mozaffarian

Feed the Future Policy Impact Study Consortium
Funded by USAID

Global Nutrition and Policy Consortium
Funded by BMGF: www.globaldietarydatabase.org

Feed the Future Innovation Lab for Nutrition
Funded by USAID: www.nutritioninnovationlab.org
Agriculture and the nutrition transition in English-language books

The ag.-nutrition transition in food supplies

Horizontal movements = more food (or less)
With large differences in dietary diversity!

Diagonal movements = more and different foods

What has changed? Fifteen years into the 21st c., we have:

- **Renewed and changing attention to food**
 - Much new attention to diet quality and nutritional influences on health
 - Many new food-related technologies, policies and public-sector programs

- **Rapid transformation of agriculture and food systems**
 - Urban growth ≥ population growth in most regions outside Africa
 - Farm population and area growth is slowing or has stopped
 - Food markets are rapidly commercializing & intensifying everywhere
 - Gender roles are changing, in households and in education/employment

- **Rapid transition in demography and disease**
 - Child mortality and birth rates are declining or already low
 - Disease burdens shift from infectious to non-communicable diseases
 - *In shift from under- to over-consumption, diets remain #1 health risk*
Is all this change just *more of the same*?

Strategy
- test for shifts in the global average *at each level of national income*
- this generalizes the Preston curve (Preston 1975, Bloom & Canning 2007), first applied to life expectancy

Data
- national income: purchasing power per capita (*not household income!*)
- health outcomes: burden of disease
- body size: heights and weights
- diet quality: NutriCoDE indexes
- ag. transformation: rural pop. growth, ag. employment and earnings
- policy choices: price effects of agricultural policies

Method
- all data are nationally representative; results are weighted by population
- each test uses all available countries, then subsets of countries
- start with modeled estimates for all (>160) countries
- then survey observations, for selected (>40) countries
We can look only where there is data

- **National income**
 - GDP per capita at PPP prices, from Penn World Tables 8.1

- **Health**
 - Fraction of DALYs lost, from Global Burden of Disease study

- **Body size**
 - Height and weight Z scores, from GBD estimates and survey data

- **Diet quality**
 - Lower- and higher-risk foods, from dietary recall and modeled estimates

- **Agriculture**
 - Rural pop. growth, ag. employment & earnings from ILO, UNPP and WB

- **Policy choices**
 - Price comparisons from WB Distortions to Agricultural Incentives project
Start with the signature diet-related disease:

diabetes
Diabetes burdens in 1990

The global burden of diabetes (share of DALYs lost) Modeled estimates for 1990 in 162 countries

A clear income gradient …but also more variance at higher incomes

Note: Symbols are sized by population, with year shown as 1990=green circles.

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
The global burden of diabetes (share of DALYs lost) Modeled estimates for 1990 in 162 countries

- Note the wider confidence interval at higher incomes
- Note India and China are near their local means

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
Changes in diabetes from 1990 to 2005

The global burden of diabetes (share of DALYs lost)
Modeled estimates for 1990 and 2005 in 162 countries

From 1990 to 2005, relative burden rose in lower and middle income countries

India and China shifted up and along the same curves as other countries

Note: Symbols are sized by population, with year shown as 1990=green circles and 2005=red triangles. Lines show each year’s local means and confidence intervals estimated by -lpoly-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
Diabetes burdens have risen in poor countries

The global burden of diabetes (share of DALYs lost)
Modeled estimates for 1990, 2005 and 2010 in 162 countries

O = 1990
△ = 2005
□ = 2010

China and India remain near their local means

The change was from 1990 to 2005; no significant further rise to 2010

Note: Symbols are sized by population, with year shown as 1990=green circles, 2005=red triangles, and 2010=blue squares. Lines show each year’s local means and confidence intervals estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
Now contrast with the signature illness of undernourishment: diarrhea
disease
Diarrheal disease burdens have fallen

The global burden of diarrheal disease (share of DALYs lost) Modeled estimates for 1990, 2005 and 2010 in 162 countries

Note: Symbols are sized by population, with year shown as 1990=green circles, 2005=red triangles, and 2010=blue squares. Lines show each year's local means and confidence intervals estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
Diarrheal disease burdens have fallen very fast.

The global burden of diarrheal disease (excl. China & India)
Modeled estimates for 1990, 2005 and 2010 in 160 countries

Relative burdens fell most in the poorest countries

Note: Symbols are sized by population, with year shown as 1990=green circles, 2005=red triangles, and 2010=blue squares. Lines show each year’s local means and confidence intervals estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study, Results by Cause; GDP and population are from PWT 8.1.
The most visible kind of change: adult obesity
Adult obesity had a clear income gradient in 1990

Global prevalence of obesity (share of adults aged 20+)
Modeled estimates for 1990 in 162 countries

Note: Symbols are sized by population, with year shown as 1990=green circles. Lines show each year’s local means and confidence intervals estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75. Source: Global Burden of Disease Study; GDP and population are from PWT 8.1.
From 1990 to 2010, did the income gradient shift?

Global prevalence of obesity (share of adults aged 20+)
Modeled estimates for 1990, 2005 & 2010 in 162 countries

Note: Symbols are sized by population, with year shown as 1990=green circles, 2005=red triangles, and 2010=blue squares. Lines show each year's local means and confidence intervals estimated by -lpoly-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study; GDP and population are from PWT 8.1.
Adult obesity has shifted up in richer countries

Global prevalence of obesity (share of adults aged 20+)
Model estimates for 1990, 2005 & 2010 in 160 countries, ex. China & India

Proportion of adults aged 20+ who are obese at each level of national income

Real GDP per capita at PPP prices (2005 USD), log scale

Outside of China & India the gradient is now steeper

Note: Symbols are sized by population, with year shown as 1990=green circles, 2005=red triangles, and 2010=blue squares. Lines show each year's local means and confidence intervals estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: Global Burden of Disease Study; GDP and population are from PWT 8.1.
The main development goal: child stunting
Child stunting rates have shifted down

Pct. of children under 5, 1985-99 [n=250] and 2000-11 [n=337])

Note: Symbols are sized by population, with decades shown by green circles for 1986-99 (250 surveys in 103 countries) and blue squares for 2000-2011 (337 surveys in 117 countries). Lines show local means and confidence intervals for each period estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: World Bank, WHO and UNICEF joint data; GDP and population are from PWT 8.1.
Outside China and India, child stunting has shifted down the most for the poorest

Note: Symbols are sized by population, with decades shown by green circles for 1986-99 (240 surveys in 101 countries) and blue squares for 2000-2011 (330 surveys in 115 countries). Lines show local means and confidence intervals for each period estimated by -lpoly-, weighted by population and with a bandwidth of 0.75. (Excludes India and China.)

Source: World Bank, WHO & UNICEF joint data; GDP and population are from PWT 8.1.
Child stunting has shifted down within Africa

Pct. of children under 5, in 1985-99 [(n=84)] and 2000-11 [(n=123)]

Note: Symbols are sized by population, with decades shown by green circles for 1986-99 (84 surveys in 40 countries) and blue squares for 2000-2011 (123 surveys in 42 countries). Lines show local means and confidence intervals for each period estimated by -lpoly-, weighted by population and with a bandwidth of 0.75.

Source: World Bank, WHO & UNICEF joint data; GDP and population are from PWT 8.1.
Less prevalent, but still serious: child wasting
Child wasting rates have also fallen.

Pct. of children under 5, in 1985-99 [n=244] and 2000-11 [n=333]

O = 1985-99
□ = 2000-11

Note: Symbols are sized by population, with decades shown by green circles for 1986-99 (244 surveys in 102 countries) and blue squares for 2000-2011 (333 surveys in 116 countries). Lines show local means and confidence intervals for each period estimated by -lpolyCI-, weighted by population and with a bandwidth of 0.75.

Source: World Bank, WHO and UNICEF joint data; GDP and population are from PWT 8.1.
Child wasting has fallen outside China & India, too

Note: Symbols are sized by population, with decades shown by green circles for 1986-99 (234 surveys in 100 countries) and blue squares for 2000-2011 (326 surveys in 114 countries). Lines show local means and confidence intervals for each period estimated by -lpoly-, weighted by population and with a bandwidth of 0.75. (Excludes India and China.)

Source: World Bank, WHO & UNICEF joint data; GDP and population are from PWT 8.1.
What has happened to diet quality?
Food balance sheets are useful, but limited

Percent of energy from non-staple foods and total dietary energy by region, 1961-2011
(FAO Food Balance Sheet estimates)

Diet quality is multi-dimensional

The GBD Nutrition and Chronic Diseases Expert Group (NutriCoDE) approach:

• More healthy foods
 • Diet score is higher (better) for more intake of protective, lower-risk items:
 • Fruits, vegetables, fish, milk, beans & legumes, nuts & seeds
 • Whole grains, fiber
 • Polyunsaturated fatty acids, plant omega-3s

• Less unhealthy foods
 • Diet score is higher (better) for less intake of unhealthy, higher-risk items:
 • Sugar-sweetened beverages
 • Red meats, processed meats
 • Saturated fat, trans fat, dietary cholesterol
 • Sodium

Imamura et al. index of healthy food use

Diet quality scores based on more intake of 10 healthier foods, 1990-2010
(Modelled estimates for 1990 and 2010 in 161 countries - excl. China & India)

O = 1990
□ = 2010

Positive gradient starts at about $4,000, and shifts up at about $16,000

Note: Symbols are sized by population, with year shown as 1990=green circles, 2010=blue squares.
Diet score is scaled so that higher values = more intake of 10 healthy items: fruits, vegetables, beans and legumes, nuts and seeds, whole grains, milk, polyunsaturated fatty acids, fish, plant omega-3s, and dietary fibre.
Lines show means and confidence intervals estimated by lpolyci, weighted by population and with a bandwidth of 0.75.
Source: Nutrition and Chronic Diseases Expert Group (NutriCoDE); GDP and population are from PWT 8.1.
Imamura et al. index of unhealthy food use

Diet quality scores based on less intake of 7 unhealthy foods, 1990-2010
(Modeled estimates for 1990 and 2010 in 161 countries - excl. China & India)

- Negative gradient flattens after $16,000.
- Means improved from 1990 to 2010 but not significantly

Note: Symbols are sized by population, with year shown as 1990=green circles, 2010=blue squares.
Diet score is scaled so that higher values = less intake of 7 unhealthy items: Red meats, processed meats, sugar-sweetened beverages, saturated fat, trans fat, dietary cholesterol, and sodium.
Lines show means and confidence intervals estimated by lpolyci, weighted by population and with a bandwidth of 0.75.

Source: Nutrition and Chronic Diseases Expert Group (NutriCoDE); GDP and population are from PWT 8.1.
We can look for similar shifts in:

agricultural transformation
The poorest still have rapid rural population growth

Annual growth of the rural population, excluding outliers and India & China
Modeled estimates for 1990, 2000 and 2010 in 165 countries

Note: Symbols are sized by population, with year shown as 1991=green circles, 2000=red triangles, 2010=blue squares. Lines show means and confidence intervals for each year at each level of income, estimated by -polyci- with population weights and a bandwidth of 0.75. Excluded outliers are Afghan., Andorra & Falkland Is. in 1990, Andorra & W.Sah. in 2000, Japan in 2010.

The poorest still have large majorities on farms

Share of total employment in agriculture, without China and India
Modeled estimates for 1991, 2000 and 2010 in 154 countries

Note: Symbols are sized by population, with year shown as 1991=green circles, 2000=red triangles, 2010=blue squares. Lines show means and confidence intervals for each year at each level of income, estimated by -lpoly- with population weights and a bandwidth of 0.75. Agriculture includes forestry, hunting and fishing.

Only for the richest have farm earnings shifted up

Labor productivity in agric. vs. other sectors, excl. India & 3 small outliers
Modeled estimates for 1991 \([n=81] \), 2000 \([n=113] \) and 2010 \([n=118] \)

\[
\begin{align*}
\bigcirc & = 1990 \\
\triangle & = 2000 \\
\square & = 2010
\end{align*}
\]

Note: Symbols are sized by population, with year shown as 1991=green circles, 2000=red triangles, 2010=blue squares. Lines show means and confidence intervals for each year at each level of income, estimated by \(-lpolyci-\) with population weights and a bandwidth of 0.75. Excluded outliers are Guyana in 2000, Slovenia and Malta in 2010.

How have governments responded?

food price policy
Food policy’s “development paradox” is no longer

Consumer Tax Equivalent (CTE) of all agricultural policies
Value-weighted effect on food prices in 1990, 2000 and 2010

Note: Symbols are sized by population, with decades shown by green circles for 1990 (62 countries), red triangles for 2000 (77 countries) and blue squares for 2010 (69 countries). Lines show local means and confidence intervals for each year estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: World Bank, Distortions to Agricultural Incentives project; GDP and population from PWT 8.1.
Food policy’s pro-staples bias is diminished

Consumer Tax Equivalent (CTE) on F&V versus starchy staples
Ave. effect on F&V/starchy staple price ratios in 1990, 2000 and 2010

Note: Symbols are sized by population, with decades shown by green circles for 1990 (29 countries), red triangles for 2000 (31 countries) and blue squares for 2010 (33 countries). Lines show local means and confidence intervals for each year estimated by -lpolyci-, weighted by population and with a bandwidth of 0.75.

Source: World Bank, Distortions to Agricultural Incentives; GDP and population from PWT 8.1.
Fifteen years into the 21st century, what’s changed?

The Preston curve approach reveals a lot:

• The present is like the past, only more so
 • most change is movement along a stable development path
 -- although some variables have shifted, at some income levels

• Significant global shifts include:
 • for the poorest, much less stunting, wasting and diarrheal disease
 • at middle-income levels, more diabetes and other diet-related disease
 • in the richest countries, more obesity but also more healthy food intake

• The most surprising shifts may be in policy choices
 • no longer pushing food prices down in poor countries/up in rich countries
 • no longer keeping starchy staples cheaper than F&V
Bending these curves requires concerted action:

• To complete the eradication of undernutrition
 --sharp declines have been achieved by both shifting & moving along the curves

• To treat the existing burden of diet-related disease
 --at higher incomes diabetes is controlled, despite rising obesity

• To prevent future increases in diet-related disease
 • upward shifts in the income gradient for obesity may be reversible

• To take advantage of changes in food price policy
 • ending policies that favor starchy staples creates incentives for new investment

...But note the evidence is still very limited!
Many results rest on inference from few observations
We can only see where there is data.
thank you!